11Особые точки нелинейных систем на плоскости
В предыдущей главе мы обсудили, как устроены особые точки линейных систем на плоскости. Но что мы будем делать, если нам встретится нелинейное уравнение?11.1Линеаризация особой точки
Рассмотрим системуСделаем замену переменных: . Таким образом мы перенесли особую точку в начало координат. Соотношение (11.3) принимает вид
Как связаны решения нелинейной системы с решениями её линеаризации в окрестности особой точки? Отброшенное при переходе к линеаризации слагаемое является очень маленьким, и чем ближе мы к особой точке, тем оно меньше. Можем ли мы им пренебречь, если нас интересует поведение системы вблизи особой точки, по крайней мере, на каком-то качественном уровне? Оказывается, ответ зависит от типа получившейся линейной особой точки.
11.2Свойства нелинейных особых точек
Говорят, что нелинейная особая точка является, например, центром по линейным членам, если её линеаризация является центром. Аналогично с другими типами особых точек.Если говорить коротко, то фазовые портреты особых точек, являющихся узлами, фокусами или сёдлами по линейным членам, очень похожи на фазовые портреты своих линеаризаций. Для точек с линеаризацией «центр» это утверждение неверно. Ниже мы сформулируем что это значит более строго.
11.2.1Невырожденный узел
Фазовые портреты линейных узлов выглядят по-разному в зависимости от типа узла. Если узел невырожденный, то есть собственные значения различны и существуют два разных собственных вектора, то почти все траектории стремятся к особой точке (в прямом или обратном времени), касаясь того собственного вектора, чьё собственное значение меньше по модулю. Фазовые кривые похожи на ветви парабол. Исключение составляют траектории с начальными условиями, лежащими на том собственном векторе, у которого собственное значение больше по модулю.Например, у системы
Эту и следующие теоремы можно было бы вывести из так называемой теории нормальных форм, но это выходит за рамки нашего курса. Поэтому мы ограничимся примерами.
11.2.2Дикритический узел: скалярная матрица
Если собственные значения совпадают и матрица линеаризации является скалярной (то есть тождественной умноженной на число), то все фазовые траектории (кроме особой точки) — лучи прямых, каждая стремится к особой точке под собственным углом. Для соответствующей нелинейной системы траектории не обязаны быть лучами прямых, но характеристическое свойство — стремиться к особой точке под своим собственным углом — у них сохраняется.11.2.3Вырожденный узел: жорданова клетка
Если собственные значения совпадают, но матрица не является скалярной, то она в некотором базисе является жордановой клеткой. У неё есть единственный собственный вектор и все траектории такой системы, кроме особой точки, стремятся к особой точке, касаясь этого собственного вектора.11.2.4Фокус
В отличие от узлов, траектории фокусов стремятся к особой точке, не касаясь какого-то направления, а совершая бесконечное число оборотов вокруг особой точки. Аналогичное утверждение справедливо и для соответствующих нелинейных систем.11.2.5Седло
У сёдел есть два вещественных собственных значения разных знаков и, соответственно, два собственных вектора. Их фазовые кривые — ветви гипербол, кроме самой особой точки и четырёх прямолинейных лучей, называющихся сепаратрисами. Две сепаратрисы стремятся к седлу при вдоль собственного вектора с отрицательным собственным значениям (такие сепаратрисы называются входящими), две другие сепаратрисы стремятся к седлу при вдоль собственного вектора с положительным собственным значением (это исходящие сепаратрисы).Например, для простейшего случая
У соответствующей нелинейной особой точки также существуют сепаратрисы. Они не обязаны быть прямыми, но обязаны касаться собственных векторов.
Это — знаменитая теорема Адамара — Перрона, первый результат так называемой гиперболической динамики.
11.2.6Центр
Во всех предыдущих примерах было справедливо неформальное утверждение «фазовый портрет вблизи нелинейной особой точки качественно похож на фазовый портрет линеаризации». Для центров это утверждение неверно. Фазовые кривые линейного центра обязательно замкнуты. Фазовые кривые соответствующей нелинейной особой точки могут быть спиралями.Чтобы построить фазовый портрет системы, перейдём в полярные координаты. Нам будет проще работать не с полярным радиусом, а с его квадратом: . Вычислим производную функции вдоль векторного поля, заданного системой (11.7):
Можно также найти уравнение на полярный угол . Напоминим, что . Значит по теореме о производной сложной функции: Уравнение на имеет вид
11.3Пример исследования нелинейной особой точки
Рассмотрим системуСобственные векторы равны и . Первый из них имеет меньшее собственное значение, поэтому почти все траектории будут его касаться, стремясь к особой точке в обратном времени.
Неверный ответ. А вот и нет
Неверный ответ. Нет, не фокус
Неверный ответ. Нет.
Верный ответ. Да! Собственные значения и . А фазовый портрет в целом выглядит вот так.
11.4Выводы
Фазовые портреты нелинейных систем на плоскости можно исследовать, переходя к линеаризации. Для этого надо вычислить матрицу Якоби правой части системы в особой точке — она и будет матрицей линеаризованной системы. Если линеаризация имеет особую точку типа узел, фокус или седло, фазовый портрет исходной (нелинейной) системы в окрестности особой точки похож на фазовый портрет линеаризации. Для центров это неверно: центры по линейным членам могут выглядеть как фокусы. К особым точкам с вырожденной матрицей линеаризации этот метод неприменим.Дифференциальные уравнения на плоскости изучены относительно неплохо: хотя нахождение точных решенений конкретного уравнения может составлять сложную (или даже нерешенную) проблему, в целом человечество понимает, какие эффекты в этом мире встречаются и чего от таких уравнений можно ждать. Переход к пространствам больших размерностей принципиально усложняет динамику: мы далеки от полного понимания нелинейных уравнений уже с трёхмерным фазовым пространством. Однако линейные системы в любой размерности анализируются сравнительно несложно. Ими мы и займёмся в следующей главе.